3 research outputs found

    IMCAD: Computer Aided System for Breast Masses Detection based on Immune Recognition

    Get PDF
    Computer Aided Detection (CAD) systems are very important tools which help radiologists as a second reader in detecting early breast cancer in an efficient way, specially on screening mammograms. One of the challenging problems is the detection of masses, which are powerful signs of cancer, because of their poor apperance on mammograms. This paper investigates an automatic CAD for detection of breast masses in screening mammograms based on fuzzy segmentation and a bio-inspired method for pattern recognition: Artificial Immune Recognition System. The proposed approach is applied to real clinical images from the full field digital mammographic database: Inbreast. In order to validate our proposition, we propose the Receiver Operating Characteristic Curve as an analyzer of our IMCAD classifier system, which achieves a good area under curve, with a sensitivity of 100% and a specificity of 95%. The recognition system based on artificial immunity has shown its efficiency on recognizing masses from a very restricted set of training regions

    IMCAD: Computer Aided System for Breast Masses Detection based on Immune Recognition

    No full text
    Computer Aided Detection (CAD) systems are very important tools which help radiologists as a second reader in detecting early breast cancer in an efficient way, specially on screening mammograms. One of the challenging problems is the detection of masses, which are powerful signs of cancer, because of their poor apperance on mammograms. This paper investigates an automatic CAD for detection of breast masses in screening mammograms based on fuzzy segmentation and a bio-inspired method for pattern recognition: Artificial Immune Recognition System. The proposed approach is applied to real clinical images from the full field digital mammographic database: Inbreast. In order to validate our proposition, we propose the Receiver Operating Characteristic Curve as an analyzer of our IMCAD classifier system, which achieves a good area under curve, with a sensitivity of 100% and a specificity of 95%. The recognition system based on artificial immunity has shown its efficiency on recognizing masses from a very restricted set of training regions

    Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaseolus vulgaris L

    Full text link
    [EN] Salinity is one of the major abiotic stresses which affects plant cell metabolism and reduces plant productivity. Variations in the antioxidant defence systems under salinity among two bean genotypes were investigated. Our results indicate that the difference between the genotypes in response to salinity is a quantitative trait rather than qualitative since they develop the same strategies with a significant variation in the rate of synthesis and accumulation, with the exemption of the antioxidant defence based on the synthesis of phenolic compounds. For both genotypes, salinity induced a marked reduction in dry matter gain in roots and shoots along with oxidative stress as indicated by the significant increase in malondialdehyde content. In addition, the photosynthetic pigments decreased with the increase of salinity. The only qualitative difference that we found among both genotypes was the decrease of total production of phenolic compounds in leaves that was only detectable in the low-yielding genotype under high salinity. The high-yielding genotype may have a better protection against oxidative damages by increasing the activity of antioxidant enzymes and the amounts of total flavonoids and ascorbic acid under high salinity, which allows maintaining higher yield even upon stress conditions. These results indicate that salt induced oxidative stress in bean is mainly counteracted by enzymatic defence systems, and that the metabolism of phenolic compounds is induced under very extreme conditions. The selection of genotypes for this trait will increase yield under stress conditions.Taïbi, K.; Taïbi, F.; Abderrahima, LA.; Ennajahb, A.; Belkhodja, M.; Mulet Salort, JM. (2016). Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaseolus vulgaris L. South African Journal of Botany. 105:306-312. doi:10.1016/j.sajb.2016.03.011S30631210
    corecore